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ABSTRACT 
Some of the integrals in a Localized Boundary Domain 
Integral Equations (LBDIEs) encounter problem of 
having singularity expression in part of its integrals' 
kernel.   The singularities are of logarithmic singularity 
and  2r

 
singularity, where r  is the distance between 

the field point y  and source point x .  This paper 
propose a method named as quadratic semi analytic 
method to get rid the influence of   2r singularity which 
is part of one integration kernel in the Neumann 
LBDIEs. The derivation of this method is important to 
invalidate the singularity influence in order to get high 
accuracy in numerical experiments. The key idea is 
represent the difficult boundary integral with 

2r singularity of ( , )xT P x y  as two integrals. The first 
integral is without the coefficient variable ( )b x  can be 
calculated exactly whereas the second integral with the 
coefficient variable ( )b x  is to be computed 
numerically. This idea is possible to overcome the 
influence of 2r  from the fact that the analytic solution 
moves faster than its numerical solution. As for 
implication, the derivation of this quadratic semi 
analytic method helps to invalidate the singularity 
influence of 2r whenever x  is near to y  without  
having to calculate the integral exactly.  
 
Keywords: Localized boundary-domain integral 
equations, partial differential equations, Neumann 
problem, semi quadratic analytic method, singularity.  
 

I. INTRODUCTION 
Partial Differential Equations (PDEs)  that include 
Laplace's equation, Helholmz's equation, heat equation, 
convection-diffusion  equation, wave equation can be 
met in mathematical physics and engineering. See e.g.  
[1]. A remarkable revolution of computer's technologies 
has boosted the development of the numerical methods 
in solving PDEs. Among the most popular numerical 

methods to solve Boundary Value Problems (BVPs) for 
the PDEs are Finite Element Method (FEM), Finite 
Difference Method (FDM) and Boundary Element 
Method (BEM). When comparing BEM with both 
alternative methods i.e. FEM and FDM, [1] stated that 
BEM is vastly superior in efficiency and accuracy. The 
dimensionality of  both alternative methods preserves 
from the dimensionality of the original physical problem. 
On the other hand, the dimensionality of the BEM is 
reduced by one with respect the dimensionality of the 
original physical problem. See e.g. [1]-[2]. 

 However, the reduction of the dimensionality is 
mostly applicable for the BVPs for PDEs with constant 
coefficient. This is due to the availability of the 
fundamental solution for PDEs with constant 
coefficients. The idea is to present the solution in terms 
of boundary distributions of fundamental solution. The 
fundamental solution arise from the older idea of a 
Green's function. unfortunately, a fundamental solution 
is not always accessible for PDE with a variable 
coefficient. A parametrix can be used as an alternative 
for the PDE with variable coefficient. In contrast to the 
use of fundamental solution, the use of a parametrix does 
not bring down the BVPs to the Boundary Integral 
Equations (BIEs) that have lesser by one of 
dimensionality than the BVPs. 

 Nevertheless, by making use of the parametrix, the 
BVPs for PDEs with variable coefficients will be bring 
down to  Boundary-Domain Integral Equations (BDIEs) 
that have the same dimensionality as the BVPs. For the 
discussions of BDIEs, please refer [3]-[6]. The 
preservation of the dimensionality of the BDIEs does not 
help the researchers in reduction of the cost of 
computation as the BDIEs need the discretization of the 
entire solution domain. 

This disadvantage is in par with FEM. However, 
unlike BDIEs, FEM produces the system with sparse 
matrix. See e.g. [7]. This sparse matrix system of FEM is 
cheaper in computational cost as compared to the dense 
matrix system of BDIEs. See e.g. [7] and [2]. 
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 In year 2002, [8] used a localized parametrix as 
alternative to a parametrix for the BVP corresponds to 
PDE with variable coefficient. By utilizing the localized 
parametrix, the BVPs for PDEs with variable coefficient 
can be transformed to the localized Boundary-Domain 
Integral Equations (LBDIEs). The LBDIEs still need the 
discretization of the entire solution domain like in 
BDIEs but the prevailed system of equations is the 
sparse system of equations as obtained in FEM. 

Even though the LBDIE  enjoy the advantage of 
having sparse system of equations like in FEM, it 
however has a prominent drawback just like for BIE and 
BDIE. The drawback lies on the fact that some of the 
integrals in a BIE, BDIE and LBDIE are having 
singularities' expressions in part of their integrals' 
kernels. The singularities are of logarithmic singularity 
and    singularity. 

 There are several methods that have been proposed 
to handle both types of singularities. The standard 
procedure is by using suitable numerical integration 
formulae to integrate integrals with those singularities. 
The standard numerical integration formulae for 
integrals without singularity is Gauss quadrature. For 
the integrals involving logarithmic singularity, the use 
of Gauss Laguerre quadrature is more suitable. See 
e.g.[1]. However, this Gauss Laguerre quadrature 
formulae for integrals with singularity kernel may not 
give results as efficient as the Gauss quadrature  for 
integrals without singularity kernel. Whereas, the Duffy 
transformation can be used for the singularities at the 
vertices for double integrals. Refer e.g. [1] and [9]. 
Other than Duffy transformation, [10] introduced a 
numerical method which is also based on transformation 
to reduce the order of singularity. 

 In 2012, [11] formulated a radial integration 
method transforming domain integrals into equivalent 
boundary integrals. The advantage of this technique is 
that the weak singularities as part of the integrations' 
kernels for the double integrals are transformed to the 
boundary integrals. Several results concerning radial 
integration methods can be found in [12]-[14]. 

 In 2014, [15] derived a semi-analytic integration 
technique as an  alternative to Gauss Laguerre 
quadrature formula for integrating the integrals with 
logarithmic singularity kernels. 

In this work, we derive a method called semi 
quadratic integration method to integrate the integrals 
with   singularity as part of its integrals' kernels. 
 
II. SEMI QUADRATIC INTEGRATION METHOD 

A. Singularity 
The second Green's theorem yields BIE for BVP of PDE 
with constant coefficient. One of the integrands of the 

boundary integrals is of the form 2 2| |r x y    which 
have singularity's influence in numerical computations.  
The singularity's influence is much obvious when the 
field point y  is close to the source point x  which is 
part of the integration element. 
 However, this singularity's influence can be handled 
easily by calculating the analytical solution for the 
condition whenever the field point y  is close to the 
source point x  which is part of the integration element. 
When the collocation point y  is not part of the 
integration element, we can use standard numerical 
integration method, i.e. Gaussian quadrature.  
 Unfortunately, the BVP for PDE with variable 
coefficient ( )b x  will not be bring down to BIEs like the 
constant coefficient case. Instead, it will be reduced to 
BDIEs or LBDIEs. Furthermore, the kernel of one of the 

BDIEs or LBDIEs is of the form 2
1( ) .
( )

b x
r b y

  

 The integration with the kernel 2
1( )
( )

b x
r b y

 for 

which the field point y  is close to the source point x  
which is part of the integration element  can absolutely 
be calculated exactly. However, it is not practical to 
calculate the integration exactly for each and every time 
we have different values of variable coefficient ( )b x .  
 
B. Neumann Boundary Value Problem 
 

We consider a linear elliptic PDE of order two with 
variable coefficient ( )b x , 

2

1
( ) ( ) ( ) ( ),

i i i
Lu x b x u x f x

x x

 
 

   x , 

where ( )u x for x   is the unknown,  ( )f x    
and ( )b x  are dictated functions,   is the boundary 
and   is the domain. 
 
 Let's take the Neumann boundary condition as below. 

2

1

( )( ) ( ) ( ) ( ),    i
i i

u xTu x b x x t x x
x





  

 . 

The notation 1 2( ) ( ( ), ( ))x x x    represents the 
outward normal to .   
 Let's denote ( , )P x y  as the parametrix which is given 
by 

2ln | |( , ) ,    ,
2 ( )

x yP x y x y
b y


  � . 

  Then, we have 



International Journal of Engineering Trends and Technology (IJETT) – Editor’s Issues – 2020 
 

ISSN: 2231-5381                           doi : 10.14445/22315381/CATI1P213                             Page 77 

 

2 2

2
1 1

( )( , )( , ) ( ) ( ) ( ) ( ) .
2 ( )

i i
x i i

i ii

x yP x yT P x y b x x b x x
x b y r

 
 


 

 
 
 By imposing a localized parametrix  

( , ) ( , ) ( , ),P x y x y P x y 
 

we can transform a BVP for PDE with variable 
coefficient to a  LBDIEs. Unlike a BDIE that produce a 
dense system of matrix equations, a LBDIEs will give 
rise to a system of sparse matrix equations. 
 Let's consider a constant cut-off function   as given 
below, 

                         

,1,
( , )

,0,
y

y

x
x y

x






                                  

(1) 
where y  is the localisation domain. 
 The localized parametrix ( , )P x y  fulfills that   

( , ) ( ) ( , ),xL P x y x y R x y   
 

where ( )x y   is the Dirac delta function and ( , )R x y  
is referred as 

( , ) ( , ) ((1 ) ).xR x y R x y L P     
 Here ( , )R x y  is the remainder which is defined as 

2

1

1 ( )( , ) ,    , .
2 ( ) | |

i i

i i

x y b xR x y x y
b y y x x 

 
 

  �  

 The third Green identity localizes on  ( )y    and 
its boundary  [ ( ) ]y   is given below. 

( )

( )

( )

( )

( )

( ) ( ) ( ) ( , ) d ( )

             ( , ) ( ) d ( )

             ( ) ( , ) d ( )

             ( , ) ( ) d ( )

             ( , ) ( ) d ( )

          

xy

y

xy

y

y

c y u y u x T P x y x

P x y Tu x x

u x T P x y x

P x y Tu x x

R x y u x x





















 

 

 

 

 







( )
  ( , ) ( ) d ( ), .

y
P x y f x x y 

  

         (2) 

 The choice of cut-off function  ( , )x y  in (1) implies  
( , ), ,

( , )
0, ,

y

y

P x y x
P x y

x




  
 

 and   

`

( , ), ,
( , )

0, .
y

y

R x y x
R x y

x




  
 

 However, the Neumann BVP is not always solvable. If 
it does, the solvability of the Neumann BVP is unique up 
a constant [4].  
 

III. RESULTS AND DISCUSSIONS 
A. Discretization of the Neumann Localized 
Boundary-Domain Integral Equations 
 

We substitute the Neumann boundary condition,  
( ) ( ),Tu x t x x  , and add perturbation operator to 

Neumann LBDIEs (2) to get a unique solution for 
Neumann problem and obtain the perturbed BDIEs as 
follows. 

( ) ( )

( ) ( )

( )

1( ) ( ) ( ) d ( )

( ) ( , ) d ( ) ( , ) ( ) d ( )

( , ) ( ) d ( ) ( , ) ( ) d ( )

( , ) ( ) d ( ), .

xy y

y y

y

c y u y u x x

u x T P x y x P x y Tu x x

R x y u x x P x y t x x

P x y f x x y

  

  





 

 



 


   

    

  



 
 


  
 We place field point ix  where ix    at J   source 
points of the mesh and obtains the system of J  
equations. 

( )
( ) ( ) ( ) ( )

               , ,

j i j

i i j j
ij ij

x x x

i
i i

c x u x W u x W u x

Q D x




 

 

  

 
  

where ,  ij ijW W


, iQ    and iD  are described as below. 

( )

( )

( )

( ) ( , ) d ( )

( )
( , ) ( ) d ( )

( )

( ) ( , ) d ( ), if ( ),

0, if ( ),

i

i

i

i
ij j xx

ji
x

i j i
jx

j i
ij

W x T P x x x

x
P x x x x

x

x R x x x x x

W x x

b



















  

 
   

  

 






  (3) 

1 ( ) d ( ),ij jW x x



 
    (4) 

( )
( , ) ( ) d ( ),

i

i
i x

Q P x x t x x 
     (5) 

( )
( , ) ( ) d ( ).

i

i
i x

D P x x f x x
    (6) 

 The global shape function j  are nonzero only on 

( )jx  , hence (3)-(6)  yield  
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( ) ( )

( ) ( )

( ) ( )

( ) ( , ) d ( )

( )
( , ) ( ) d ( )

( )

( ) ( , ) d ,

lj i
l

lj i
l

mi j
m

i
ij j x

x x

ji

x x

i
j

x x

W x T P x x x

x
P x x b x x

x

x R x x x


  


  


 








 

  


  

  

 
   



 

 

 
   

 (7)

  

( )

1 ( ) d ( ),
lj

l

ij j
x

W x x






 

 
     (8) 

( )
( , ) ( ) d ( ),

li
l

i
i

x
Q P x x t x x




 

                      (9) 

( )
( , ) ( ) d .

mi
m

i
i

x
D P x x f x x




 

                             (10) 

 Denoting  
1

, 11
( ) ( ( ), ) ( ) d ,l i

n i n x lA T P x x J   


                  (11) 

�1
, 11

( ( ), ) ( ) d ,l i
NN i lC P x x C J   


                          (12) 

1 1
, 2 1 21 1

( ) ( ( ), ) ( ) d , m i
N i N mG R x x J d    

 
      (13) 

1
11

( ( ), ) ( ( )) ( ) d , l i
i lF P x x t x J    


                    (14) 

1 1
1 1 21 1

( ( ), ) ( ( )) ( ) d d ,m i
i mH P x x f x J     

 
         (15) 

where 

�
2 2

1 1 ( )

( )
( ( )) ( ( )) ,N k

N p
p k k p

C x x
x

b
  

 
  

  

     
   

  


and, 
( )n   and ( )n   are the local shape functions, 

respectively  for 1D and 2D cases which are given by 

   1 2
1 1( ) 1 ,    ( ) 1 ,   1 1,
2 2

              

1 1 2 2 1 2

3 1 2 4 1 2

1 2

( ) (1 )(1 ) / 4,    ( ) (1 )(1 ) / 4,
( ) (1 )(1 ) / 4,    ( ) (1 )(1 ) / 4,    

1 , 1,

     
     
 

       

       
  
 
such that  

4

1
( ) ( ) ,mN

N
N

x X 


                                             (16) 

and  

2
 

1
( ) ( ) .l n

n
n

x X 


                                               (17) 

 Here ,  1, ,4mNX N    are the vertices for each 
domain element 

,  ,  ,  ,M
mm k mm

e e e e k m        ,  and 
 ,  1, 2l nX n   are the end points for each boundary 

element  ,  .L
l l l     U   The notations 1lJ  

and 2mJ  are the Jacobians of the transformation (16) 
and  (17), respectively. 
 We can then write (7)-(10) as 

( , ), ( , ),
( ) ( ) ( ) ( )

( , ),
( ) ( )

,

i j i j
l l

i j
m

l l
ij n j l i N j l i

x x x x

m
N j m i

x x

W A C

G
    

 

    

  

  



 


  

( , )
( )

1 ,
j

l

l
ij n j l

x
W B





 


    

( )
,

i
l

l
i i

x
Q F

  

     

( )
,

i
m

m
i i

x
D H

 

    

where  ,n j l  is the local number of the global source 

point jx  on the boundary element   l   and   ,N j m   

is the local number of the global source point  jx    on 
the domain element  m . 
 Note that ( , )xT P x y  in (11) has the singularity of 

2
( ( ))

( )i
b x
r b x

   when the field point ix  is close to the source 

point ( )x   which is part of the integration element. In 
this paper, we will derive a method to get rid of handle 

the singularity's influence of  2
( ( ))

( )i
b x
r b x

 . The method is 

named as quadratic semi- analytic method. 
 
B. Derivation of the Quadratic Semi-Analytic Method 
 

 ,
l
n iA  in (11)  can be written as  

1
1 1 11

( ) ( , ( )) ( ) d ,l i
i x lA T P x x J   


    (18) 

1
2 2 11

( ) ( , ( )) ( ) d ,l i
i x lA T P x x J   


    (19) 

where  

 1 1 1 2 2 22
( ( ))( , ( )) ( ) ( ) ( ) ( ) .

2 ( )
i i i

x i
b xT P x x x x x x x x

r xb


  


   



International Journal of Engineering Trends and Technology (IJETT) – Editor’s Issues – 2020 
 

ISSN: 2231-5381                           doi : 10.14445/22315381/CATI1P213                             Page 79 

 

  Equations (17)  leads us to the linear interpolation of 
( ( ))b x   as given below. 

           1 2( ( )) ( ) ( ( 1)) ( ) ( (1)).b bx x xb            (20) 

Multiplying 1( )  and 2 ( ) , respectively to (20) 
give 

 21 1 1 2( ) ( ( )) ( ) ( ( 1)) ( ) ( ) ( (1)),x x b xb b         

 
 22 1 2 2( ) ( ( )) ( ) ( ) ( ( 1)) ( ) ( (1)).b b bx x x          

  
 The expressions 1

l
iA   and 2

l
iA   in (18) and (19) can be 

set up as given below. 

1 1 1,l l l
i B AA G G    2 2 2 ,l l l

i B AA G G    
where 

 21 1 1 2( ) ( , ( 1)) ( ) ( ) ( , (1)),i i
b x xg T P x x T P x x       

 
 22 1 2 2( ) ( ) ( , ( 1)) ( ) ( , (1)),i i

b x xg T P x x T P x x        

  

 
2

1 1 1 2 2 2

( ( 1))( , ( 1))
2 ( )

                        ( ( 1) ) ( ) ( ( 1) ) ( ) ,

i
x i

i i

xT P x x
r x

b
b

x x x x x x

 

 

 
   

 

     

 

 
2

1 1 1 2 2 2

( (1))( , (1))
2 ( )

                      ( (1) ) ( ) ( (1) ) ( ) ,

i
x i

i i

xT P x x
r x

x x x x x x

b
b 

 

 
  
 

   

 

 1
1 1 1 11

( ) ( , ( )) ( ) d ,l i
B x b lG T P x x g J   


            (21) 

 1
2 2 2 11

( ) ( , ( )) ( ) d .l i
B x b lG T P x x g J   


           (22) 

 

1
1 1 11

1 2
1 11

1
1 2 11

( ) d

( ) ( , ( 1)) ( ) d

( ) ( ) ( , (1)) ( ) d

l
A b l

i
x l

i
x l

G g J

T P x x J

T P x x J





 

  

   









  

  






 

 

 

 

   

1 1 1 2 2 2

1 2
121

1 1 1 2 2 2

1
121

( ( 1)) ( ( 1) ) ( ) ( ( 1) ) ( )

8 ( )

11 ( ) d

( (1)) ( (1) ) ( ) ( (1) ) ( )

8 ( )

11 1 ( ) d ,

i i

i

l

i i

i

l

x x x x x x x

x

J
r

x x x x x x x

b

b

b

b x

J
r

 



  

 



   





      
  
 
 

   
 

   
  
 
 

    
 





    

(23) 
 

 

1
2 2 11

1
1 2 11

1 2
2 11

( ) d

( ) ( ) ( , ( 1)) ( ) d

( ) ( , (1)) ( ) d

l
A b l

i
x l

i
x l

G g J

T P x x J

T P x x J





 

   

  









   

 






 

  

 

  

 

 

1 1 1 2 2 2

1
121

1 1 1 2 2 2

1 2
121

( ( 1)) ( ( 1) ) ( ) ( ( 1) ) ( )

8 ( )

11 1 ( ) d

( (1)) ( (1) ) ( ) ( (1) ) ( )

8 ( )

11 ( ) d .

i i

i

l

i i

i

l

x x x x x x x

x

J
r

x x x x

b

b

x x

J

b

xb

x

r

 



   

 



  





      
  
 
 

    
 

   
  
 
 

   
 





     

(24)  
 
 The integrals  1BG  and  2BG  in  (21) and (22) are 
computed by numerical quadrature i.e. the standard 
Gaussian quadrature. Whereas, the integrals  1AG  and   

2AG   in equations  (23) and (24), respectively, will be 
computed analytically. The analytical expressions of 

1AG  and 2AG  are as follows.   

 

 

1 1 1 2 2 2
1 1

1 1 1 2 2 2
2

( ( 1)) ( ( 1) ) ( ) ( ( 1) ) ( )

8 ( )

( (1)) ( (1) ) ( ) ( (1) ) ( )
,

8 ( )

i i

A Ai

i i

Ai

x x x x x x x
G g

x

x x x x x x x
g

x

b

b

b

b
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1 1 1 2 2 2
2 2

1 1 1 2 2 2
3

( ( 1)) ( ( 1) ) ( ) ( ( 1) ) ( )

8 ( )

( (1)) ( (1) ) ( ) ( (1) ) ( )
,

8 ( )

i i

A Ai

i i

Ai

x x x x x x x
G g

x

x x x x x x x
g

x

b

b

b

b

 



 



     


  


  
   
where 

21
1 21

(1 ) d ,A
dsg
dr







                             (25) 

 
1

2 21

(1 )(1 ) d ,A
dsg
dr

 




 
        (26)                                                           

                      
21

3 21

(1 ) d .A
dsg
dr







                             

(27) 
Analytically the integrals in  (25)-(27) can be written as 
follows. 

1
1 4

2

2 2 4 2 2
2 21 2 2 2 3 3 1

2 2 3 22 2 2
1 2 3

8 ( )

( 2 2 )
        ( )g ,

l
A

J
g

V

V V V V V V g
V V V

V V V

 
   
 
       
  

  

 

 

2 2 2
1 1 2 2 3 3 1

2 4 2 2 2
2 1 2 3

2 2 2 2 2
1 1 2 3 2 2 3 2

4 2 2 2
2 1 2 3

8 ( ) ( 2 )

4 ( ) 2 ( 2 )
,

l
A

l

J V V V V V g
g

V V V V

J V V V V V V g

V V V V





  
 
  
        

  

 

 

 

2 2 2
1 1 2 3 1

3 4 2 2 2
2 1 2 3

2 2 2 2
1 1 2 3 2 3 2

4 2 2 2
2 1 2 3

8 ( ) ( ) 2

8 ( )
,

l
A

l

J V V V g
g

V V V V

J V V V V V g

V V V V





 




 




  

where 

                   2
1( ) ,

2l
VdsJ

d



   

2 2 2
1 2 3

1 2
1 3

,
( )
V V V

g ArcTan
V V

 
 
  

 

2 2
1 2 3

2 2
1

( 2 )
,

V V V
g Log

V
  

  
 

 

and 1 2,  V V  and  3V  are defined below.  

                         

1 1

2 2 1

3 1 2 1

| ( ) |,
| ( ) ( ) |,

( ( )) ( ( ) ( )).

i
l

l l
i

l l l

x x s
x s x s

x x s x s x s

V
V

V

 
 

   

  

IV. CONCLUSION 
The problem of having the influence of the 

2 2| |r x y    singularity of ( , )xT P x y  
in one of the 

LBDIEs can be handled by representing the boundary 
integral as two separate integrals. Respectively, integral 
with the variable coefficient ( )b x  and without the 
variable coefficient ( ).b x  The one without the variable 
coefficient ( )b x  can be calculated exactly since the 
integrand is not varies even for different values of 
variable coefficient ( ).b x  The one with variable 
coefficient ( )b x is to be calculated numerically.  
 It is clear that this idea can overcome the influence of 
the singularity 2 2| |r x y  

 
based on the fact that the 

exact solution obtained for integral with the variable 
coefficient ( )b x

 
moves faster than its numerical 

solution. For the future research, we aim to do some 
numerical experiment to validate our claim. 
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